How to Build an AI Software System in 7 Steps from ScratchHome » Software » How To Build An AI Published On: March 3, 2023 Last Updated: March 3, 2023 Are you interested in building your own AI system? Do you want to build a custom AI software solution that best fits your business?No wonder, Artificial Intelligence and Machine Learning software is powerful to transform business operations and helps to improve productivity, efficiency, and accuracy.According to GlobalNewswire, the AI software market is estimated to reach $1094.52 billion by 2032. Being a business owner or entrepreneur, you surely want to leverage AI technology to boost up your business or startup.That’s why you might be wondering about how to build an AI software, the timeline for developing an AI software solution, and the team structure of AI engineers.From this blog, you will get a complete clarity on building your own AI software system for your business.Let’s get started.ContentsHow to Build an AI Software Solution [Follow These 7 Steps]How Much Time Does It Take to Build an AI System?Comprehensive AI Software Development Team StructureFAQ Related to AI Software Development ProcessLet’s Develop Your AI Software SolutionLet’s look at the complete process that you can follow to create AI software for your business.How to Build an AI Software Solution [Follow These 7 Steps]As a leading AI software development company, we know the thorough process of developing an advanced AI software system.Define an Objective of Your AI ProjectThe foundation of your AI project is the problem you want to resolve. You must know why you want to develop an AI system.For instance, if you are a financial institution and you want an accurate fraud detection system for your institute, your problem statement would be to determine the types of fraud to detect, the data sources to use, and the performance metrics to measure the fraud.What if you don’t know a clear problem? In such cases, finding out what data to collect, what algorithms to use, and measuring the success of your project becomes difficult.Based on your problems, the measurable goals and objectives of your AI project get decided. According to that, an SRS document of your AI project is created.Further, based on your specific set of problems, the data collection process gets initiated.Want to Build Your Own AI Solution? Looking to validate your project requirements? Consult our experienced AI developers and get a complete roadmap for your project development.Schedule Your Free ConsultationRelevant Data Collection and Evaluation for Your AI ProjectData is important when building AI software because it helps to train AI software to learn patterns and make predictions.Data collection is done from multiple sources, such as databases, APIs, web scraping, surveys, and sensors. Without proper data, AI software cannot learn and make predictions accurately.That’s why collecting data relevant to the problem statements becomes important. Data engineers collect structured and unstructured data depending on your project requirements.Once data collection is done, data preparation gets executed. To properly execute data preparation, choosing the right tech stack for your AI solution becomes essential as it influences the data preprocessing pipeline. You will learn about the tech stack in detail in the next step.Data processing includes multiple steps that include, data cleaning, data transforming, and normalization of data.Data cleaning is a process of removing duplicate or irrelevant data to eliminate inconsistencies.Data transformation is converting data into a standardized format that is numerical or categorical data.Normalization refers to ensuring the data is consistent and follows a standard format.Make sure to collect the relevant data for training your AI model. This helps you to get the expected results from the AI model you train. The next step comes here is choosing the right technology stack for developing your AI solution.Choosing The Best-fit Technology Stack for Your AI ProjectChoosing a tech stack should be a careful consideration as it directly impacts the performance, scalability, and maintainability of your AI solution.How do you select the right tech stack for your project? Well, there are multiple factors that play an important role, such as considering project requirements, data characteristics, scalability, and security needs of your AI solution.From selecting the right AI programming language to the infrastructure of your AI software development and everything in between play an important role.As a leading AI software development company, we have a strong understanding of the technology stack used to develop AI systems. Here is a list of the tech stack of information like the best AI programming languages, frameworks, extensive machine learning libraries, big data technologies, and other development tools.TechnologyDescriptionProgramming languagesPythonJavaC++RFrameworksTensorFlowKerasPyTorchCaffeCNTKSparkMLlibBig data technologiesApache HadoopSparkCassandraArtificial Intelligence and Machine Learning platformsGoogle TensorFlowPyTorchIBM WatsonDataRobotRapidMinerMicrosoft AzureCloud computing platformsAWSGoogle Cloud PlatformMicrosoft AzureGraphical user interfaces (IDE)Jupyter NotebookAnacondaPyCharmDeployment toolsDockerKubernetesAWS LambdaAzure FunctionsUsing the mentioned technology stack, the Artificial Intelligence software development team builds advanced computer systems for your business. Depending on your business requirements, the right combination of AI technologies is selected for your AI project development.Choosing the Right AI Algorithm for Your ProjectChoosing the right AI algorithm results in the success or failure of your AI project. There are multiple different AI algorithms available for different types of problems.According to your problem, the right AI algorithm is selected for your project development.Selecting the right algorithm for your AI project depends on multiple factors, such as the type of problem you want to resolve, the availability of data, the accuracy and performance, and the resources and expertise required to build your AI project.Technically, there are these four main types of AI algorithms available.Supervised learningUnsupervised learningReinforcement learningDeep learningUsing the right algorithm helps in multiple ways, such as your solution being optimized for the specific problem and reducing the cost and timeline of your AI project development.Having a deep understanding of the problem statement before developing an AI system is important. Because indirectly the problem statement, collection of data, and choosing an appropriate AI algorithm for a specific use case are connected.Training and Fine-tuning the AI Models for Your AI ProjectThe main goal of training a model is to create a model that accurately predicts or classifies new data based on the patterns learned from the training data. Training AI models is a complex process and it also requires proper infrastructure.The core steps followed by our Artificial Intelligence software development to training machine learning models are as follows:Execution of the process of data preprocessingDefining the parameters for the training algorithmFeeding collected data into the algorithmMonitoring the algorithm’s performanceFine-tuning the algorithm for validationTo leverage maximum AI capabilities, having a proper infrastructure is important. The training process involves inputting data into AI models, allowing learning of AI models based on the given data, and modifying the data models to get expected results.Moreover, there are chances you need to add more data to your AI models. Depending on the complexity of your project and results in you except the Artificial Intelligence models, training of AI models is done on the prepared data.Development of Your Software and Integrating AI and ML ModelsBy using the agile software development life cycle, the AI software development team integrated trained AI models into your software development.During the development of your AI software solutions, architecture design, user interface design, front-end, and back-end of your AI software is done parallelly.According to your requirements, the features and functionalities of your AI solution are coded by AI software developers. Moreover, third-party integrations APIs and SDKs are used to execute the final development of your AI solution.However, Artificial Intelligence models integrated into your software get continuously trained to improve your integrated model accuracy. This helps to get the expected results from your AI software.The performance of your AI software solution is optimized according to your business requirements at last. Once the development gets completed, testing and evaluation of your AI solution are done.Testing, Deployment, and Monitoring of Your AI System SolutionTesting Stage:With the help of QA engineers, the testing of your AI solution is done. Using the software testing life cycle, the QA team performs the end-to-end testing of your AI solution. The following are the steps of the software testing life cycle.Testing planWriting test casesExecuting test casesReporting testing resultsTracking defectsTest closureUsing this process, the QA team ensures your AI solution has no defects or issues. In addition, testing helps to know the accuracy, bias and fairness, performance, and feedback of your AI software.All the results of your AI solution are validated before deploying AI-powered systems into production. So, there are no defects or issues with your AI solution.Deployment Stage:To deploy your AI solution, firstly, infrastructure is a setup that includes deciding on networking components and place of deployment either cloud or on-premise as per your requirements.With tools like Kubernetes or Docker, the packaged AI model is deployed into your production environment.For deploying AI systems, the Continuous Integration/Continuous Deployment approach is used. Using manual or automated tools, deployment of your AI system is executed into cloud platforms like GCP, AWS, or Microsoft Azure. After deployment, the AI software development team offers continuous maintenance as required to continuously update data and models.Monitoring and Updating the Model:To get accurate results from your AI software, it becomes important to update and monitor your AI model’s accuracy and relevancy. That’s why the AI software development team continuously monitors and updates your AI software with new data as required in the future.This is the complete process of developing an AI software solution. Now, let’s learn about the timeline for developing an AI software solution.How Much Time Does It Take to Build an AI System?The tentative timeline to build AI software ranges from 4 to 9 months.However, the timeline of building AI systems depends on multiple factors. The following are the mentioned factors that directly impact the overall timeline of development.The complexity of the problem you want to resolveThe availability of data and quality of dataThe experience of the AI software development teamChoosing the right AI algorithmThe number of AI developers you hireIntegration of third-party services or APIsThe timeline required to test and evaluate AI modelsThese are the key factors that directly impact an AI software development. In addition, to give proper bifurcation of the AI software development timeline, here is a table.Stage of AI Software DevelopmentApproximate TimelineProblem Definition and Project Planning2 – 4 weeksData Collection and Preparation4 – 12 weeksAI Model Development8 – 16 weeksTesting and Evaluation of AI Software4 – 8 weeksDeployment and MaintenanceOngoingRemember the mentioned timeline is general to give you an idea. The actual timeline to develop your AI software depends on multiple factors, such as the expertise of your AI developers, the location of developers you hire, and the desired level of your AI solution development.Now, let’s learn about the team structure of the AI software development team. This way, you get an idea of how the AI software development team is different from the traditional software development team.Comprehensive AI Software Development Team StructureHere are the roles of different professionals involved in an AI software development team structure. Let’s look at each profile.Business AnalystsA business analyst works to analyze business processes, and systems, identify areas of improvement and propose solutions according to your business problems. Business analysts collect requirements, documentation, develop use cases and define your business objectives.UX/UI DesignersUX/UI designers are responsible for creating a user interface and experiences for your AI project. Designers ensure to create an attractive, intuitive, and easy-to-use user interface for your AI project.Data ScientistsWhen you want to develop any AI system, the role of data scientists is very important. Data scientists directly deal with the field of data science of your business which will be used to train AI models. The primary role of data scientists is to collect, process, clean, and analyze data from your building and training models.Machine Learning EngineersML engineers closely work with data scientists for developing machine learning algorithms, designing, and implementing data pipelines. The primary role of machine learning engineers design, develop ML models, and as well as build and deploy machine learning models into software solutions.AI DevelopersSoftware developer’s role is to develop software applications and systems according to business requirements that include AI capabilities by integrating AI models and algorithms. This way, software developers code the software application from scratch and then integrate the AI models.DevOps EngineersDevOps engineers closely with software developers, quality assurance engineers, and designers to create and manage automated testing and deployment systems. In short, DevOps engineers are solely responsible for deploying machine learning and AI models into production environments.Project ManagersThe role of project managers is to completely manage and control your AI project. A project manager handles the project resource, budgets, and progress of your AI project development. Project managers work to ensure that your AI project meets your goals and objectives.Data AnalystsThe role of data analysts is to collect, clean, process, and analyze data of your business for accurately developing machine learning models. Data analysts closely work with data scientists and machine learning engineers for ensuring the ML models get trained on high-quality datasets.This is the core team of the AI software development team. All these different professionals closely work with each other to develop a high-quality and effective AI software solution.Want to Hire AI Software Developers for Your Project? Let’s talk. We have a team of AI software developers who have a strong understanding of AI and ML technologies.Book Your Free Consultation Are you looking for more information on AI software development? Check the next section of the FAQ.FAQ Related to AI Software Development ProcessWhich are the core components of Artificial Intelligence?Here is the list of core components related to Artificial Intelligence that allows machines to think like a human brain.Machine learningNatural language processingComputer visionRoboticsExpert systemsWhat are the benefits of developing an AI software solution?These are the benefits you get by developing an AI software system for your business.Improve the efficiency of your overall business operationsSave costs associated with errors, inefficiencies, and laborIncrease your customer satisfaction by providing personalizationGain a competitive advantage in your businessGet new data insights for your business growthLet’s Develop Your AI Software SolutionIn this blog, you have learned about the complete process of building an AI software solution, approximate timeline, and AI software development team. As you see, the process of developing AI software is complex and long. Therefore, hiring a professional and experienced team of AI software developers can help you to achieve your expected outcomes.If you are looking to develop your own AI software solution, let’s talk. We are a leading AI software development company having a team of experienced software developers, designers, and QA engineers. Describe your requirements to us and get your AI software development started.Subscribe7 Written byRakesh PatelRakesh Patel is the Founder and CEO of Space-O Technologies. He has 28 years of IT experience in business strategies, operations & information technology. He has expertise in various aspects of business like project planning, sales, and marketing, and has successfully defined flawless business models for the clients. A techie by mind and a writer at heart, he has authored two books – Enterprise Mobility: Strategy & Solutions and A Guide To Open311. ×WAIT!Do you know we offer FREE 30-min consultation?If you have a project in mind, let’s talk.We are here in Canada. If required, we can meet in person. Click Here To Get Started Trusted by Leading Brands in Canada ×Join our subscribers' list now! Get top insights and news on latest technologies and trends right to your inbox.